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a b s t r a c t

A procedure for the simultaneous kinetic spectrophotometric determination of aminocarb and carbaryl
in vegetable and water samples was described. The method was based on the differential oxidation rate
of aminocarb and carbaryl when they were reacted with the oxidant, potassium ferricyanide (K3Fe(CN)6),
in an appropriate alkaline medium. Both species were instantly oxidized, and resulted in a decrease
of ferricyanide concentration. This anion has a maximum spectral absorbance at about 420 nm. Under
the optimum experimental conditions, the linear ranges were 0.05–0.6 mg L−1 and 0.1–1.2 mg L−1 for
aminocarb and carbaryl, respectively. The kinetic data collected were processed by chemometrics meth-
minocarb
arbaryl
hemometrics
ifferential kinetic method

ods, such as classical least squares (CLS), partial least squares (PLS), principal components regression
(PCR), back propagation-artificial neural network (BP-ANN), radial basis function-artificial neural net-
work (RBF-ANN), and principal component-radial basis function-artificial neural network (PC-RBF-ANN).
These methods were applied for the prediction of the two carbamate pesticides. The results showed that
the PLS and PC-RBF-ANN calibration models gave the lowest prediction errors. The proposed method

to the
actor
was successfully applied
water samples, and satisf

. Introduction

Modern pesticides, such as the nonpersistent N-methyl and car-
amoyloxime carbamates have replaced the organochlorine and
rganophosphorus compounds, and are used in large amounts
or both agricultural and non-agricultural purposes. They have

broad action spectrum, are highly effective, and generally,
ave low mammalian toxicity. Their applications as insecti-
ides, fungicides, or herbicides are related to their molecular
tructure (Table 1), and as insecticides they typically possess
he N-substituted carbamate moiety and an aromatic ester or
xime group [1,2]. In addition, their toxicity relates to their
bility to act as cholinesterase inhibitors and to form potential

utagens such as N-nitrosocarbamates. Carbamate insecticides

uch as aminocarb (4-dimethylamino-3-methyl-N-carbamate) and
arbaryl (1-naphthyl-N-methylcarbamate) are toxic to humans.
owever, they are widely used in agriculture to treat stored grain,

∗ Corresponding author at: Department of Chemistry, Nanchang University, East
anjing Rd., Nanchang, Jiangxi 330047, China. Tel.: +86 791 3969500;
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simultaneous determination of aminocarb and carbaryl in vegetable and
y results were obtained.

© 2009 Elsevier B.V. All rights reserved.

grass lawns, fruits and vegetables in order to control a number of
insect pests such as Lepidoptera and Coleoptera [3–5]. Thus, these
pesticides and their degradation products remain as contaminants
in environmental samples, such as soil, groundwater, surface water,
and also in food. There are many analytical methods for the deter-
mination of aminocarb [6–9] and carbaryl [10–14] in waters or
vegetables. Although many of these methods are suitable, they are
time-consuming and require relatively expensive instrumentation,
and some toxic organic reagents. Therefore, simple, sensitive, and
reliable alternative methods would be advantageous and useful.
Such a possible alternative approach could be based on the differen-
tial kinetic spectrophotometric analysis of these two compounds.
The principles and applications of the differential kinetic methods
have been previously summarized [15,16]. They involve either a
reaction with a common reagent or a passage through a common
chemical process. Differences in the reaction or process kinetics
are used to distinguish the analytes without the need for physical
separation. The major limitation of many conventional techniques

for processing kinetic data is their reliance on an accurate kinet-
ics model of the system under study. This requires knowledge of
the reaction order and rate constants of each reaction in the chem-
ical system. In general, continuing work on handling kinetic data
with chemometrics techniques suggests that perhaps the most

http://www.sciencedirect.com/science/journal/03043894
http://www.elsevier.com/locate/jhazmat
mailto:ynni@ncu.edu.cn
dx.doi.org/10.1016/j.jhazmat.2009.03.003
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Table 1
Chemical structures of aminocarb and carbaryl.

Pharmaceuticals Molecular formula Molecular weight Chemical structures

Aminocarb C11H16N2O2 208.26

Carbaryl C12H11NO2 201.22
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seful models are those which do not need an assumed kinetic
odel. In particular, recent publications [17–19] involving mul-

ivariate calibration methods have successfully demonstrated the
se of classical least squares (CLS), principal component regression
PCR), partial least squares regression (PLS), back propagation-
rtificial neural network (BP-ANN), radial basis function-artificial
eural network (RBF-ANN), and principal component-radial basis

unction-artificial neural network (PC-RBF-ANN).
In this paper, we report the research and development of a dif-

erential kinetic spectrophotometric method for the simultaneous
etermination of the two carbamate pesticides, aminocarb and car-
aryl, with the aid of chemometrics. The method was based on
he different kinetics of these two substances, when they reacted
ith potassium ferricyanide in an appropriate alkaline medium.

he kinetic data collected was processed by several chemomet-
ics methods to develop the calibration models, and these methods
ere then validated with the aid of synthetic samples containing
ixtures of the two compounds. Thereafter, the best performing
ethods were applied to analyse several vegetable and water sam-

les to demonstrate their general applicability.

. Methodology

.1. Kinetic models

Consider that two analytes, A and B, react with a common
eagent, R, to give the same absorbing product P, according to the
ollowing scheme:

+ R → PA (1)

+ R → PB (2)

here PA and PB correspond to the products obtained from A and B,
espectively. If it is assumed that the two reactions involved follow
rst or pseudo first-order kinetics with respect to the concentration
f the analytes, the rate equations for A and B are:

dcA

dt
= kAcA (3)

dcB

dt
= kBcB (4)

here cA and cB are the concentrations of A and B at time, t, and kA

nd kB are the rate constants of A and B.

Integration of Eqs. (3) and (4) yields:

A = cA,0exp(−kAt) (5)

B = cB,0exp(−kBt) (6)
where cA,0 and cB,0 are the initial concentration of A and B. According
to the stoichiometric factors between the analytes and products, the
concentrations of PA and PB at time, t, can be represented as follows:

cPA = cA,0[1 − exp(−kAt)] (7)

cPB = cB,0[1 − exp(−kBt)] (8)

where cPA and cPB represent the concentrations of PA and PB at time,
t, during the reaction process, respectively.

If it is assumed that the two analytes behave independently and
their absorbances are additive, then the absorbance of the mixture
of A and B may be written as

A = APA + APB
= εAbcPA + εPB bcPB
= cA,0εPA b[1 − exp(−kAt)] + cB,0εPB b[1 − exp(−kBt)]
= KAcA,0 + KBcB,0

(9)

where εPA and εPB are absorptivity of PA or PB, respectively, KA and
KB are proportional coefficients for component A and B, respec-
tively, and b is the optical cell length.

If m standard samples are prepared, the absorbance data of
kinetic systems being monitored at time, s, can be expressed in
matrix form as follows:

Am×s = Cm×2K2×s (10)

The data matrix, Am×s, may be used to determine the concentration
of the pesticide analytes simultaneously with the use of a suitable
chemometrics method such as CLS, PCR, PLS, BP-ANN, RBF-ANN,
and PC-RBF-ANN.

2.2. Multivariate calibration and artificial neural network
methods

2.2.1. Classical least squares method
CLS [20] is a very common multivariate calibration method and

has been used for quantitative spectral analysis. This method is gen-
erally based on the assumption that there is a linear relationship
between the response signals and the concentrations of the ana-
lytes. In addition, this method requires a calibration step where the
relationship between the spectra and component concentrations is
estimated from a set of standard samples. This step is followed by

prediction in which the calibration model is used to estimate the
concentrations of the components from the spectra of unknown
samples. A major disadvantage of CLS is that all interfering chemi-
cal components in the spectral region of interest need to be included
in the calibration models.
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.2.2. Principal component regression and partial least squares
ethods

PCR [21] and PLS [22] are factor analysis-based multivariate sta-
istical tools, which have many of the full-spectrum advantages
f the CLS method, and have been successfully applied for the
nalysis of multicomponent mixtures. As with the CLS method,
CR and PLS methods require a calibration step, which is followed
y a prediction step for the estimation of the concentrations in
he unknown samples. Both of these methods involve spectral
ecomposition. The PCR decomposition is based entirely on spectral
ariations without regard for the component concentrations, and in
LS, the spectral decomposition is weighted to the concentration
atrix.

.2.3. Back-propagation artificial neural network method
BP-ANN is sometimes called the multilayer feed forward (MLF)

etworks method, and is a popular neural network approach. Its
asic theory and application to chemical problems have been
iscussed elsewhere [23,24]. This model is composed of a large
umber of simple processing elements or neuron nodes which are
rganized into a sequence of layers. The first layer is the input layer
ith one node for each variable of the data. The second layer is the
idden layer consisting of a number of nodes, which are used for

earning. The last layer is the output layer consisting of one node
or each variable in the matrix. Nodes in any layer are fully or ran-
omly connected to nodes of a succeeding layer. During the training
rocess, each connection between the nodes of different layers is
epresented by a weight, ωij, which is defined as

ωij(n+1) = ��ıjoj + ˛�ωij(n) (11)

here ıj is the error term, oj the output of node j, � the learning
ate, ˛ the momentum, and n is the iteration number. Iteration is
ompleted when the error of prediction reaches a minimum. In this
ork, a non-linear sigmoidal transfer function was applied between

he input and output of node, and the concentration values were
caled from 0.2 to 0.8 by multiplying by a constant to accommo-
ate the bounded range of the function output. Optimal values of
and ˛ were taken as those with minimized error of prediction. In
P networks, supervised training approach is used to optimize the
roper setting of the weights. In general, the weights are optimized
ith the use of some training input samples together with their

ssociated desired outputs. The weight updates are based on the
ifference between the actual and the desired output of the net-
ork. The weight updating can be carried out after each sample or

t can be done after all training samples have been processed. The
wo procedures are strictly equivalent.

.2.4. Principal component-radial basis function-artificial neural
etwork methods

RBF-ANN architecture is similar to that of BP-ANN. It offers some
dvantages over the BP-ANN by improving the robustness and sen-
itivity of the model when dealing with noisy data. Its basic theory
nd application to chemical problems have been reported in the lit-
rature [25–27]. Its model also involves three layers. The first layer
s made up of input nodes that transmit unweighted inputs to each
ode in the hidden layer. Each hidden node contains a radial basis

unction as the transfer function. The outputs of these nodes are
eighted and summed to produce the final output. In contrast to

he sigmoid function, the kernel or basis function is classified as a
ocal activation function. The main difference between the trans-

er function in the BP networks and the kernel function in the RBF
etworks, is that the latter (usually a Gaussian function) defines an
llipsoid in the input space. The key to a successful implementation
f the RBF networks is to find suitable a centre for such a Gaussian
unction, which is characterized by two parameters, i.e. centre (cj),
terials 168 (2009) 1239–1245 1241

and peak width (�j). The output from the jth Gaussian neuron for
an input object, xi, can be calculated by the following equation:

outputj = oj(x) = exp

(
−|xi − cj|2

�j

)
(12)

where |xi − cj| is the calculated Euclidean distance between xi, and
cj, and �j determines the portion of the input space where the jth
RBF will have a non-significant zero response. After selection of the
centre and peak width, the connections between the radial basis
units and the output node are weighted. The output of the net is
consequently given by

yi =
n∑

i=1

ωjioj(x) (13)

where ωji represents the weights of the connections between the
hidden layer, i, and output layer, j, and oj(x) is obtained from Eq.
(12).

PC-RBF-ANN is an improved RBF-ANN model, which has been
successfully applied for the determination of analytes in mixtures
[17,18]. In this method, the kinetics data of the calibration mixtures
has been previously compressed into scores with the use of PCA,
and then the scores of this model were employed as input data
to the network. This reduced considerably the ANN-training time
without loss of information.

3. Experimental

3.1. Apparatus

Spectra were measured on an Agilent 8453 UV–vis spectropho-
tometer equipped with a Model ZC-10 thermostat temperature
control accessory (Ningbo Tianhe Instruments Factory, China).
These measurements were made with the use of a 10 mm path-
length fused-silica cell. The sample solutions were subjected to a
short sonication (SK1200H, Kudos Ultrasonic Instrument Co. Ltd.,
Shanghai), and all solution volumes of less than 1 mL were deliv-
ered with micropipettes (Finnpipette, Labsystems, Finland). The
obtained data were processed on a Pentium IV computer with pro-
grams written in MATLAB 6.5 (Math works).

3.2. Solutions and reagents

All solutions were prepared with Analytical Grade reagents, and
doubly distilled water was used throughout. Stock solutions of
aminocarb and carbaryl (100.0 mg L−1) were prepared from suitable
weight aliquots, and dissolved with 20 mL methanol in a 100 mL vol-
ume flask. The solution was then diluted to the mark with distilled
water and mixed well. Stock solutions of potassium ferricyanide
(K3Fe(CN)6, 2.0 × 10−4 mol L−1) and sodium hydroxide (2.0 mol L−1)
were prepared by taking suitable weight aliquots of the reagents
and dissolving them in water. The standard solutions were stored
in a refrigerator and protected from light.

3.3. General procedure

For spectrophotometric analysis, the analytes and any other
reagents were added directly into the 10 mm cell by using
micropipettes (ThermoLabsystems). Taking into account that the
total useful volume was 2.5 mL, x mL of the analyte solution, 0.4 mL

sodium hydroxide solution were added to the cell, followed by
(1.85 − x) mL doubly distilled water to give a volume of 2.25 mL.
The cell was shaken and left to stand for 90 s in the temperature-
controlled holder of the spectrophotometer (70 ◦C) before the
absorbance was set to zero. Then 0.25 mL of potassium ferricyanide
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high concentrations of K3Fe(CN)6 could give rise to increased
spectral backgrounds, and hence, the initial concentration of this
complex salt was selected to be 2.0 × 10−4 mol L−1 K3Fe(CN)6. This
apparently low value was based on experimental spectral results
242 Y. Ni et al. / Journal of Hazardo

as added to the cell as quickly as possible, to give the final volume
f 2.5 mL just as the reaction commenced. The absorbance data of
his solution was recorded at 420 nm every 2 s between 5 and 240 s
ith respect to the distilled water blank. Each reagent was added

arefully to keep the experimental results consistent and repro-
ucible within the error of the micropipettes, i.e. ∼±0.1–1.5 �L and
he relative error introduced was less than 1%.

.4. Procedure for the determination of the carbamates in
egetable samples

Samples of commercial vegetables were homogenized in a
lender; then a 10.0 g weight aliquot of this sample was trans-
erred to a 100 mL Erlenmeyer flask (with a screw cap), and 20 mL of
ichloromethane (CH2Cl2) were added. Because the concentration
f pesticides in vegetable samples was too low for direct detec-
ion, 2.0 mL of each of the standard solutions of the pesticides were
dded. Additionally, 5.0 g anhydrous sodium sulfate (Na2SO4) was
laced into the flask to absorb the water in the sample. The mix-
ure was shaken for 30 min on a Model HY-4 oscillator (Shanghai
nstrumental Manufacture, Shanghai), and filtered on a Buchner
unnel; the residue in the funnel was further washed with 5 mL
f dichloromethane. The filtrate was treated and separated with
exane–acetonitrile (1:1) in a separation funnel; the carbamates
ere extracted into the acetonitrile phase because of their higher
olarity, while the colorants and impurities were extracted into the
exane phase. The acetonitrile phase was treated twice with hex-
ne to extract any residual impurities, and the acetonitrile phase,
ollected in an evaporating dish, was evaporated to near dryness.
inally, the residue in the evaporating dish was dissolved in ethanol,
ransferred to a 10 mL volumetric flask and diluted to the mark with
0% ethanol.

.5. Procedure for the determination of the carbamates in water
amples

A water sample was spiked with 2.0 mL of each pesticide from
he 100 mg L−1 stock solutions. After filtering, the filtrate was trans-
erred into a 100 mL Erlenmeyer flask (with a screw cap), and 1 g
f anhydrous sodium sulfate and 25 mL of dichloromethane were
dded. The mixture was then shaken for 30 min on a Model HY-4
scillator. The collected aqueous phase was extracted with another
5 mL dichloromethane. The extracts were combined, transferred

nto an evaporating dish, and evaporated to near dryness. Finally,
he residue in the evaporating dish was dissolved in ethanol, trans-
erred to a 10 mL volumetric flask, and diluted to the mark with
istilled water.

. Results and discussion

.1. Spectra and reaction kinetics

The absorption spectra of aminocarb and carbaryl in aqueous
olution overlapped strongly (Fig. 1), and also, showed a weak
bsorption peak in the UV region. This indicated that simultane-
us determination of the analytes by conventional spectral analysis
ould not produce reliable results. However, the reaction of the two
arbamate pesticides with K3Fe(CN)6 when followed as a function
f time (Fig. 2), showed that the carbaryl analyte has a compar-
tively lower absorbance than the aminocarb. This indicated that
he carboryl reaction has a higher rate than the aminocarb one. This

bserved difference in the kinetic behaviour of the two carbamate
esticides enabled the development of a differential kinetic spec-
rophotometric analytical method with the aid of chemometrics.
he rate constants for the reactions involving aminocarb and car-
aryl were estimated by fitting the experimental kinetics data from
Fig. 1. Absorption spectra of aminocarb (2 mg L−1) and carbaryl (2 mg L−1) in aque-
ous solution.

single component samples to the equation of A = a0 − a1exp(−kt)
by a suitable regression method [28]. Their values were 0.0060
and 0.0095, respectively, giving a relatively low carboryl/aminocarb
ratio of 1.5. This indicated a similar reaction behaviour and sup-
ported the view that it is difficult to resolve these substances in a
mixture by classical differential kinetic methods, such as the loga-
rithmic extrapolation and the proportional equation [16].

4.2. Optimization of the reaction conditions and univariate
calibration

The effects of the concentrations of potassium ferricyanide
and sodium hydroxide, as well as the temperature on the deter-
mination of aminocarb or carbaryl were investigated and the
optimum values were found to be 2.0 × 10−4 mol L−1, 0.32 mol L−1

and 70 ◦C, respectively. The absorption maximum of K3Fe(CN)6
spectrum at 420 nm was selected as the analytical wavelength.
The concentration of K3Fe(CN)6 had to be maintained at a high
level (generally, 100 times higher than that of the analytes) to
ensure that the pseudo first-order reaction prevailed. However,
Fig. 2. Absorbance versus time plot for aminocarb (0.15 mg L−1) and carbaryl
(0.65 mg L−1) with a total time of 240 s at � = 420 nm. T = 70 ◦C, cNaOH = 0.32 mol L−1,
and cK3Fe(CN)6

= 2.0 × 10−4 mol L−1.
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Table 2
Comparison of analytical figures of merit for the determination of aminocarb and
carbaryl.

Parameter Aminocarb Carbaryl

Number of Sample (n) 7 7
Linear range (mg L−1) 0.05–0.6 0.1–1.2
Correlation coefficient 0.9999 0.9998
Intercept 1.6 1.4
Slope (L mg−1) −1.8 −0.66
sIntercept (×10−4)a 2.2 3.3
sslope (×10−4)a 5.9 2.4
sRegression (×10−3)a 3.0 3.5
LOD (mg L−1)b 0.02 0.04

a sIntercept, sslope and sRegression are the standard deviations of the intercept, the slope
a
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Fig. 4. Composition of the calibration and validation samples. Calibration samples
(�) and validation samples (©).

Table 3
Prediction results of aminocarb and carbaryl in validation mixtures by different
chemometric methods.

Chemometric methods %RPES %RPET

Aminocarb Carbaryl Saccharin sodium

CLS 8.9(105)a 8.2(99) 8.3
PCR(3)b 5.6(102) 5.0(99) 5.2
PLS(3)b 5.4(99) 4.9(101) 5.0
BP-ANN(0.05, 0.2, 6, 800)c 6.2(103) 5.9(98) 6.0
RBF-ANN(5, 450)d 5.3(101) 5.0(102) 5.1
PC-RBF-ANN(3, 5, 300)e 5.0(97) 4.6(103) 4.8

The values in the parentheses correspond to:
a The mean % recoveries.
b The number of factors used.
c The parameters of the learning rate, momentum, nodes in the hidden layer, and

the maximum number of epochs to train, respectively; sigmoid and linear transfer
functions were used to construct the hidden and output layers in the BP-ANN model,
respectively.

d The parameters of nodes in the hidden layer and the spread coefficient (sc),
nd the regression, respectively.
b LOD is the limit of detection and was calculated according to Miller and Miller’s
ethod [29].

17], and indicated that the concentrations of the carbamates were
o be in the order of 10−5 to 10−7 mol L−1. Thus, because of the
ow levels of the analytes, the reaction process was slow. Under
hese conditions, calibration sets with different concentrations
f aminocarb and carbaryl were prepared and absorbance versus
ime was measured at 420 nm (Table 2 and Fig. 3). The linear con-
entration ranges for aminocarb and carbaryl were 0.05–0.6 mg L−1

nd 0.1–1.2 mg L−1, respectively, and their LOD values are 0.02 and
.04 mg L−1 [29]. There was a good linear correlation between the
easured absorbance and concentration.

.3. Simultaneous prediction of aminocarb and carbaryl in a
ynthetic mixture

For quantitative analysis of the binary mixtures of aminocarb
nd carbaryl, a set of 11 samples (Fig. 4) was prepared according
o the orthogonal array design [30,31] and calibration models were
onstructed with the aid of the following chemometrics methods:
LS, PCR, PLS, BP-ANN, RBF-ANN and PC-RBF-ANN. These models
ere validated against another set of nine samples (Fig. 4). Rela-

ive prediction errors (RPE) [32] from the calibration models were
stimated from the expressions below:
i. RPE for a single component in the mixtures:

%RPES =
[∑n

i=1(cij(found) − cij(added))
2∑n

i=1(cij(added))
2

]0.5

(14)

respectively; initially, the data matrix was normalised.
e The number of factors from the PCA, nodes in the hidden layer and the spread

coefficient (sc), respectively; initially, data were normalised, and the resulting matrix
was submitted to PCA. The extracted scores matrix was used for the neural network
training.

Fig. 3. Kinetic curves for aminocarb and carbaryl with different concentrations (mg L−1). Experimental conditions are as in Fig. 2.
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Table 4
Determination of aminocarb and carbaryl in commercial vegetable and water samples by the PLS and PC-RBF-ANN methods (mg L−1).

Samplesa Spiked Found Recovery (%)

Aminocarb Carbaryl Aminocarb Carbaryl Aminocarb Carbaryl

PLSb

Spinach 0.400 0.400 0.347 0.352 86.8 88.0
Potato 0.400 0.400 0.342 0.348 85.5 87.0
Tap water 0.400 0.400 0.372 0.378 93.0 94.5
Pond water 0.400 0.400 0.365 0.370 91.3 92.5
Qianhu Lake 0.400 0.400 0.364 0.369 91.0 92.3

PC-RBF-ANNb

Spinach 0.400 0.400 0.350 0.366 87.5 91.5
Potato 0.400 0.400 0.362 0.368 90.5 92.0
Tap water 0.400 0.400 0.344 0.348 86.0 87.0
Pond water 0.400 0.400 0.378 0.380 94.5 95.0
Qianhu Lake 0.400 0.400 0.382 0.379 95.5 94.8
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a Spinach and potatoes were obtained from a supermarket in Nanchang city; ta
anchang.
b Parameters used were as in Table 3.

i. RPE for the total prediction error:

%RPET = 100 ×
[∑n

i=1

∑m
j=1(cij(found) − cij(added))

2∑n
i=1

∑m
j=1(cij(added))

2

]0.5

(15)

where cij(added) indicates the concentration of component, i, in
mixture, j, and cij(found) is its estimate. n and m are the number of
validation samples and the number of analytes to be determined,
respectively.

The RPES, RPET, and the percentage mean recovery for each
hemometric method (Table 3) showed that the CLS method pro-
uced the worst results—an observation which is in agreement with
eneral experience with such models; the PCR, PLS, RBF-ANN and
C-RBF-ANN gave very similar results at %RPE of about 5, while
P-ANN gave slightly worse %RPE value (∼6). This prediction per-

ormance of the calibration methods is consistent with previous
bservations [33]. Mean recoveries for all calibrations were found
o be satisfactory in the range of 97–105%.

It is important to note that from a practical point of view of
he analyst, all methods apart from the CLS one, would be suit-
ble to employ for calibration purposes. This is important because
hile PCR and PLS methods are readily available as commercial

oftware, ANN, at present, is somewhat more difficult to obtain and
perate. However, for the purposes of this investigation involving
he simultaneous prediction of carboryl and aminocarb pesticides,
e applied the calibrations from the slightly better performing
ethod, PC-RBF-ANN, and also, for comparison, the commonly

sed and readily available PLS method.

.4. Interfering effects

In general, pesticides other than the analytes, carboryl and
minocarb, could have an inhibitory effect on the reaction pro-
ess, and they could also contribute to spectral absorption to some
xtent, in the working wavelength range. Thus, the possible inter-
erence of some pesticides that are generally used in China was
nvestigated in this study. The determination of aminocarb and car-
aryl, both at 0.4 mg L−1, in the presence of these pesticides, was

nvestigated for interference to a level of ±10% RPET. The ratio values
f the [interferant]/[analyte pesticide] at that level for aminocarb

nd carbaryl were: 150, isoprocarb; 100, propoxur and carbofuran;
0, chlorpyrifos; 50, methyl-parathion; 40, methamidophos and
enitrothion. It would appear that the interference of many of these
esticides should be relatively minor. However, these results pro-
ide only a guide for these potential interferences because the exact
r, pond water and the Qianhu Lake water were obtained from the countryside of

quantitative effects need to be checked if the method is applied
specifically for the analysis of the two analytes at lower concentra-
tions.

4.5. Analysis of aminocarb and carbaryl in vegetable and water
samples

The proposed kinetic-spectrophotometric method was applied
for the determination of the aminocarb and carbaryl in two vegeta-
bles (spinach, and potatoes) and three water samples (tap water,
pond water, and lake water). As the PLS and PC-RBF-ANN calibra-
tion models gave the better prediction results, they were applied
for the determination of the pesticides in real samples (Table 4).
Also reported were the results obtained for standard additions of
the pesticide analytes to each sample. The efficacy of the proce-
dure was further confirmed by the %Recovery values in the range
of 85.5–95.5. It was noted that there was some loss of the pesti-
cides during the extraction procedure, and the distribution ratios
of the analytes in hexane–acetonitrile is about 87.5%. This ratio
was considered in the calculation for %Recovery, and the estimated
concentration of the analytes was adjusted by 12.5%.

5. Conclusion

An accurate and simple method was researched and developed
for the simultaneous determination of aminocarb and carbaryl in
the vegetable and water samples. The results showed the suc-
cessful application of the proposed method to the simultaneous
quantification with total relative prediction errors (%RPET) of 5.0
and 4.8 for PLS and PC-RBF-ANN. The method was based on the
difference in the oxidation rate of these compounds with yellow
potassium ferricyanide in appropriate alkaline medium to form
colorless potassium ferrocyanide. The spectral data obtained were
processed by calibration models based on different chemomet-
rics methods. The predicted results of validation samples showed
that the PLS and PC-RBF-ANN models had distinct advantages
over the other chemometrics models. The proposed method was
also applied for the simultaneous determination of carbaryl and
aminocarb in the vegetable and water samples with satisfactory
results.
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